(x2−y2)dx=−2xydy
dydx=−x2−y22xy
dydx=y2−x22xy ......(1)
Since each of the functions y2−x2 and 2xy is a homogeneous function of degree 2, the given differential equation is therefore homogeneous.
Putting y=vx and dydx=v+xdvdx in equation 1, we get,
v+xdvdx=v2x2−x22x.vx
v+xdvdx=v2−12v
xdvdx=v2−12v−v
xdvdx=v2−1−2v22v
xdvdx=−(v2+12v)
2vv2+1dv=−dxx
integrating on both sides
∫2vv2+1dv=−∫dxx
log(v2+1)=−log|x|+C
log(v2+1)+log|x|=logC
(v2+1)|x|=C
(x2+y2)=C|x|