Solve the integral I = ∫π0sin2xdx
π
π2
3π2
0
I=∫sin2xdx=∫π0⟮1−cos 2x2⟯dx⟮∵sin2x=1−cos 2x2⟯
=12[∫π0dx−∫π0(cos 2x)dx]=12[x−sin 2x2]π0
=12[(π−0)−(sin 2π−sin 0)2]∴∫π0sin2xdx=π2