Put x=cos2θ on differentiating with respect to θ , and we get
dx=−2sin2θdθ
put given function and solve given function
∫√1−x1+xdx
=∫√1+cos2θ1−cos2θ(−2sin2θdθ)
=−2∫ ⎷1+(2cos2θ−1)1−(1−2sin2θ)sin2θdθ
=−2∫√2cos2θ2sin2θsin2θdθ
=−2∫√cot2θsin2θdθ
=−2∫cotθsin2θdθ
=−2∫cosθsinθ2sinθcosθdθ
=−4∫cos2θdθ
=−4∫(1+cos2θ2)dθ
=−2∫1dθ−2∫cos2θdθ
On integration, we get
=−2θ−2sin2θ2+C
=−2θ−sin2θ+C By equation (1), θ=12cos−1x
Put here and we get,
=−2×12cos−1x−sin2(12cos−1x)+C
=−cos−1x−sincos−1x+C
=−cos−1x−sinsin−1√1−x2+C
=−cos−1x−√1−x2+C
=−√1−x2−cos−1x+C
It is complete solution.