ax2+bx+c=0
We get a=2,b=1,c=1
Substituting these values in
α=−b+√b2−4ac2aandβ=−b−√b2−4ac2a
We will obtain
α=−1+√12−4×2×12×2
=−1+√1−84=1++√−74
α=−1+√7⋅√(−1)4
=−1+√7i4[∵i=√(−1)]
andβ=−1−√12−4×2×12×2=−1−√7i4
Hence, the roots are −1+√7i4&−1−√7i4