ax2+bx+c=0
We get a=√2,b=−1,c=√2
Substituting these values in
α=−b+√b2−4ac2aandβ=−b−√b2−4ac2a
We will obtain
α=−1+√12−4×√2×√22×√2
=−1+√1−82×√2=−1+√−72√2
α=−1+√(−1)72√2=−1+√7i2√2[∵i=√(−1)]
andβ=−1−√12−4×√2×√22×√2=−1−√7i2√2
Hence, the roots are −1+√7i2√2&−1−√7i2√2