α=−b+√b2−4ac2aandβ=−b−√b2−4ac2a We will obtain α=−1+√12+4×√5×√52×√5
=−1+√1−202√5=−1+√−192√5
α=−1+√(−1)192√5=−1+√19i2√5{∵i=√(−1)}
andβ=−1−√12−4×√5×√52×√5=−1−√19i2√5
Hence, the roots are −1+√19i2√5&−1−√19i2√5