(x−1)dydxx2+3x+2=0⇒dy=−(3x+2)(x−1)x2dx⇒∫dy=−∫(3x+2)(x−1)x2dxBy partial fraction;
3x+2(x−1)x2=Ax−1+Bx+Cx2⇒3x+2=(A+B)x2−(B−C)x−C
comparing both side we get;
A+B=0B−C=−3c=−2
from above equations we get
A=5;B=−5
∴∫dy=−∫3x+2(x−1)x2dx⇒y=−∫[5x−1+(−5x−2x2)]dx⇒y=−∫[5x−1−5x−2x2]dx⇒y=−[5log(x−1)−5logx+2x]+C⇒y=logx5−log(x−1)5−2x+C⇒y=logx5(x−1)5−2x+C