Solve (k−1)n=kn, where n is a positive integer.
By expanding (k−1)n,
(k−1)n=nc0kn−nc1kn−1+nc2kn−2+.....+(−1)nncn
⇒(k−1)n=kn
⇒nc0kn−nc1kn−1+nc2kn−2+.....+(−1)nncn=kn
⇒kn−nc1kn−1+nc2kn−2+.....+(−1)nncn−kn=0
⇒−nc1kn−1+nc2kn−2+.....+(−1)nncn=0
Lets take, (k−1)n=kn
Since, n-th root of unity =ei2pπn, where p=0,1,2,....(n−1)