x2dydx=y(x+y)2let,y=vx⇒dydx=v+xdvdxso,x2(v+xdvdx)=vx(x+vx)2⇒xdvdx=v2−v2⇒2dvv(v−1)=dxxLet,1v(v−1)=Av+Bv−1(bypartialfraction)⇒1=(A+B)v−Acomparingbothside,wegetA=−1andB=1∴∫2dvv(v−1)=∫dxx⇒∫[1v−1−1v]dv=∫dxx⇒log(v−1)−logv=logx+logC⇒log(v−1v)=logCx⇒v−1v=Cx⇒yx−1yx=Cx⇒y=x+Cxy