wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve: (x3+3xy2)dx+(y3+3x2y)dy=0

Open in App
Solution

dydx=(x3+3xy2)(y3+3x2y)=3xy2(x33xy2+1)3x2y(y33x2y+1)=y(x23y2+1)x(y23x2+1)

dydx=f(yx)

the given differential equation is a homogeneous equation.
The solution of the given differential equation is :
Put y=vx

dydx=v+xdvdx

v+xdvdx=vx(x23(vx)2+1)x((vx)23x2)+1=v(13(v)2+1)((v)23+1)=1+3(v)23+(v)2×1v

=1+3(v)23v+(v)3

xdvdx=1+3(v)23v+(v)3v=1+3(v)2+3(v)2+(v)43v+(v)3=1+6(v)2+(v)43v+(v)3

3v+(v)31+6(v)2+(v)4dv=dxx

Integrating both the sides we get:

3v+(v)31+6(v)2+(v)4dv=dxx+c

As we know that, ddv(1+6(v)2+(v)4)=12v+4v3=4(3v+v3)

ln|1+6(v)2+(v)44+ln|x|=ln|c|

Resubstituting the value of y=vx we get

ln|1+6(yx)2+(yx)44+ln|x|=ln|c|

y4+6x2y2+x34=C

Ans :y4+6x2y2+x34=C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon