⇒dydx=−(x3+3xy2)(y3+3x2y)=−3xy2(x33xy2+1)3x2y(y33x2y+1)=−y(x23y2+1)x(y23x2+1)
⇒dydx=f(yx)
⇒ the given differential equation is a homogeneous equation.
The solution of the given differential equation is :
Put y=vx
⇒dydx=v+xdvdx
v+xdvdx=−vx(x23(vx)2+1)x((vx)23x2)+1=−v(13(v)2+1)((v)23+1)=−1+3(v)23+(v)2×1v
=−1+3(v)23v+(v)3
⇒xdvdx=−1+3(v)23v+(v)3−v=−1+3(v)2+3(v)2+(v)43v+(v)3=1+6(v)2+(v)43v+(v)3
⇒3v+(v)31+6(v)2+(v)4dv=−dxx
Integrating both the sides we get:
⇒∫3v+(v)31+6(v)2+(v)4dv=−∫dxx+c
As we know that, ddv(1+6(v)2+(v)4)=12v+4v3=4(3v+v3)
⇒ln|1+6(v)2+(v)44+ln|x|=ln|c|
Resubstituting the value of y=vx we get
⇒ln|1+6(yx)2+(yx)44+ln|x|=ln|c|
⇒y4+6x2y2+x34=C
Ans :⇒y4+6x2y2+x34=C