x.dydx+2y=x2logx⇒dydx+2x.y=xlogx -------(1)
∵ equation (1) is linear equation so,
I.F=∫e2x.dx=e2logx=x2.
solution (1)
y.x2=∫x3II.logxI.dx
=logx.∫x3.dx−
=logx.∫x3.dx−∫[ddx.logx∫x3.dx].dx
logx.x44−∫1x.x44.dx
y.x2=x44.logx−14.∫x3.dx
y.x2=x44.logx−14.14.x4+C
y=x24logx−116.x2+C.x−2