The given equation is,
xdydx=y(logy−logx+1)
dydx=yx(logyx+1)
Put y=vx, then, dydx=v+xdvdx
v+xdvdx=v(logv+1)
v+xdvdx=vlogv+v
xdvdx=vlogv
dvvlogv=dxx
Integrate both sides,
∫dvvlogv=∫dxx
log(logv)=logx+logc
log(logv)=log(xc)
logyx=xc