Consider the given equation.
xdydx+y=x2y4
dydx+yx=xy4 …….. (1)
We know that the general equation,
dydx+Py=Q ……… (2)
On comparing both equations, we get
P=1x,Q=xy4
Therefore, the integrating factor
I.F=e∫Pdx
I.F=e∫1xdx
I.F=e∫lnx
I.F=x
Therefore, the general solution
y×I.F=∫(xy4×I.F)dx+C
y×x=∫(xy4×x)dx+C
yx=y4∫x2dx+C
yx=y4(x33)+C
Hence, this is the answer.