xlogxdydx+y=2xlogx
Put in form dydx+Py=Q
xlogxdydx+y=2xlogx
dydx+(1xlogx)y=2x2 .....(1)
Therefore,
P=1xlogx and Q=2x2
Hence, Integrating factor,
IF = e∫Pdx=e∫1xlogxdx
Let t=logx
dt=1xdx
IF=e∫1tdt
IF=elogt=t=logx
Multiplying equation 1 by IF, we get,
ylogx=2∫logxx−2dx ......(2)
Let I=2∫x−2logxdx
I=2[logx∫x−2dx−∫1x[∫x−2dx]dx]
=2[−logx1x+∫1x2dx]
=2[−1xlogx−1x]
=−2x(1+logx)
Thus, the equation 2 becomes,
ylog|x|=−2x(1+log|x|)+C which is the general solution of the given equation.