Let z=x+y
dzdx=1+dydx
dydx=dzdx−1
Now,
z2(dzdx−1)=a2
z2dzdx−z2=a2
z2dzdx=z2+a2
z2dz(z2+a2)=dx
On integration
∫z2dz(z2+a2)=∫dx...........(1)
∫z2dz(z2+a2)=∫(z2+a2−a2)dz(z2+a2)
=∫dz−a212tan−1za
=z−atan−1za
Now, (1) become
z−atan−1za=x+c
(x+y)−atan−1(x+y)a=x+c
y−atan−1(x+y)a=c