Given that:
(x−y)2dydx=a2
Let x−y=v
1−dydx=dvdx
1−dvdx=dydx
Then
v2(1−dvdx)=a2
(v2−v2dvdx)=a2
dvdx=v2−a2v2
dxdv=v2v2−a2
dx=(v2−a2v2−a2+a2v2−a2)dv
dx=(1+a2v2−a2)dv
On integrating both side, we get
x=v+a2×12alog(v−av+a)+c
x=x−y+a2×12alog(x−y−ax−y+a)+c
y=a2log(x−y−ax−y+a)+c.
This is the required solution.