Solve x2-2ax+(a2-b2)=0.
Given x2–2ax+a2–b2=0
⇒x2–ax–ax+a2–b2=0⇒x(x-a)-a(x-a)–b2=0⇒(x-a)(x-a)–b2=0⇒(x-a)2–b2=0⇒(x-a-b)(x-a+b)=0
Either x-a-b=0orx-a+b=0
⇒x=a+borx=a-b
Hence, x=a+borx=a-b is the solution of the given quadratic equation.
Solve for x and y:
xa+yb=2,ax−by=a2−b2.