wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Solve:
y+ddx(x.y)=x(sinx+logx)

Open in App
Solution

y+ddx(x.y)=x(sinx+logx)
y+y+xdydx=x(sinx+logx)
2y+xdydx=x(sinx+logx)
(2x)y+dydx=sinx+logx
dydx+(2λ)y=sinx+logx
For a differential equation of the first order
dydx+p(x)y=Q(x)
the solution is
yeP(x)dx=eP(x)dxQ(x)dx
Here we have,
P(x)=2x and Q(x)=sinx+logx
is the solution of :
dydx+(2x)y=sinx+logx
is given by
ye2xdx=e2xdx(sinx+logx)dx
yelnx2=elnx2(sinx+logx)dx
x2y=x2(sinx+logx)dx
x2y=x2sinxdx+x2logxdx
Now, let's solve the RHS separately,
x2sinxdx
=(sinxdx)x2(sinxdxddx(x2))dx
=x2cosx+cosx(2x)dx
=x2cosx+2xcosxdx
=x2cosx+2xsinx+2cosx
Similarly,
x2logxdx
=x33logxx33.1xdx
=x33logxx39
the solution is
x2y=x2cosx+2xsinx+2cosx+x33logxx39+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon