y(ylogx−1)dx=xdy
y2logx−y=xdydx
Dividing by xy2, we get
1y2dydx=logxx−1xy
1y2dydx+1xy=logxx
Now., let −1y=z
+1y2dy=dz
dzdx−zx=logxx
Now,IF=e∫−1xdx=e−logx=1x
Now, multipying with IF we get,
ddx(1x⋅z)=logxx2
On RHS, let logx=t
1xdx=dt
x=et
d(1xz)=e−ttdt
Now by integrating,we get
1xz=∫e−ttdt
Using Product formula on RHS, we get
zx=t∫e−t−∫((∫e−t)ddt(t))dt
zx=−te−t+∫e−tdt
zx=e−t(−t−1)+C
zx=−e−t(t+1)+C
As, z=−1y,t=logx
1xy=e−logx(logx+1)+C
1xy=1x(logx+1)+C