111111...4terms=()?
111416
11416
11
111516
Solution:
Solving the expression:
111111...4terms=11111111=111111(11)12[∵a=a12]=1111(11×(11)12)12=11(11×1112×1114)12=(11×1112×1114×1118)12=1112×1114×1118×11116∵(an)m=anm=1112+14+18+116[∵am×an=am+n]=11816+416+216+116[TakingLCM]=111516=111516∵amn=amn
Final answer: Hence, the correct option is (D).