The correct option is
B 12i
Let (a+ib)2=−35+12iHence,
a2−b2=−35
Also, a2+b2=√352+122
a2+b2=37
Hence, a2=1
b2=36
Also, ab=6
Hence, a=±1,b=±6 . Note : a,b will be of same signs.
Similarly,
Let (c+id)2=−35−12i
On solving we will get, c=±1,d=±6 Note: c,d will be of opposite signs.
Hence, the required answer =(1+6i)−(1−6i)=12i or =(1+6i)−(−1+6i)=2 or (−1−6i)−(1−6i)=−2 or =(−1−6i)−(−1+6i)=−12i
Hence, option B is correct.