Squaring both sides,
⇒5−√21=x+y−2√xy
Comparing both sides,
⇒x+y=5........(2)
and 2√xy=√21
Squaring both sides,
⇒4xy=21
⇒xy=214......(3)
Now, squaring both sides of eq(1)
(x+y)2=25
⇒x2+y2+2xy=25
⇒x2+y2+2×214=25
⇒x2+y2=25−212
⇒x2+y2=292.......(4)
Now,(x−y)2=x2+y2−2xy=292−212=82=4
⇒x−y=2......(5)
Solving (2) and (5)
x=72,y=32
From (1)
∴√5−√21=±(√72−√32)
Hence, solved.