Square roots of - 7 - 24i are :
Let z=−7−24i=(a−ib)2⇒a2−b2=−7,2iab=−24i⇒a2−b2=−7,ab==−12⇒(a2+b2)2=49+576=625⇒a2−b2=−7,a2+b2=25⇒a2=9,b2=16⇒a=3,b=−4ora=−3,b=4Hence√−7−24i=+−(3−4i)Aliter:Here|z|=25,b=−24<0∴√z=√25−72−i√25+72=+−(3−4i)