Statement : If a line passing through two sides of triangle then it os parallel to third side then divides other two sides in same ratio.
In ΔADE (Baes AD)
Area of triangle = 12.AD.ME _______ (1)
Again in ΔADE (Base AE)
ar.(ΔADE)=12.AE.ND ________ (2)
In ΔBDE (Base BD)
ar.(ΔBDE)=12.DB.ME ________ (3)
In ΔDEC (Base EC)
ar.(ΔDEC)=12.EC.ND ________ (4)
Equation (1) & (3)
ar.ΔADEar.ΔBDE=12.AD.ME12.DB.ME
arΔADEar.ΔBDE=ADDB _______ (5)
Now equation (2) & (4)
ar.(ΔADE)ar.(ΔDEC)=12.AE.ND12.EC.ND
ar.(ΔADE)ΔDEC=AEEC _______ (6)
By theorem,
ar.(ΔBDE)=ar.(ΔDEC)
ar.(ΔADE)ar.(ΔBDC)=ar.(ΔADE)ar.(ΔDEC)=ADBD
ar.(ΔADE)ar.(ΔDEC)=ADBD ________ (7)
By equation (6) & (7)
There L.H.S is same and R.H.S is same.
AEEC=ADBD
∴ADDB=AEEC