The correct option is
A True
From the binomial expansion
(1+x)n=nC0+nC1x+nC2x2+...+nCnxn ......(1)
Now substituting 1=1 on both sides, we have
(1+1)n=nC0+nC11+nC212+...+nCn1n
2n=nC0+nC1+nC2+...+nCn
∴nC0+nC1+nC2+...+nCn=2n
Hence the given statement is true.