Statement (I): If A+B+C=π(A,B,C>0) and the angle C is obtuse then tanAtanB<1.
Statement (II): If A,B,C are acute positive angles
such that
A+B+C=π and cotAcotBcotC=K then
k≤13√3 Which of the above statements is correct?
Statement I
tan(A+B)=tanA+tanB1−tanAtanB
tan(π−C)=−tanC=tanA+tanB1−tanAtanB
C is obtuse angle
tanC is -ve and
A+B is acute angle
tan(A+B) is +ve
⇒tanAtanB<1 True
Statement II
tan(A+B+C)=0, if A+B+C=π
∴tanA+tanB+tanC=tanAtanBtanC=1k [as given] - 1
By AM-GM on this tanA,tanB,tanC three +ve number
AM≥GM
tanA+tanB+tanC3≥(tanAtanBtanC)13
from 1
(tanAtanBtanC)23≥3
tanAtanBtanC≥3√3
⇒k≤13√3 True.