In a triangle ABC, tan A + tan B +tan C = 6 and tan A × tan B = 2, then the value of tan A, tan B and tan C are
If A+B+C=π then,tanA2⋅tanB2+tanB2⋅tanC2+tanC2⋅tanA2 =
If cos(A−B)cos(A+B)+cos(C+D)cos(C−D)=0, prove that tanA tanB tanC tanD=−1