The correct option is B 1+12+13+14+−−−−+110
Required value is 10C11−10C22+10C33……10C1010
To find which, consider (1−x)10=10C0−10C1x+10C2x2……10C10x10
⇒(1−x)10−1z=−[10C1−10C2x+……+10C10x9]
⇒∫101−(1−x)10xdx=∫10[10C1−10C2x+……+10C10x9]dx
=10C1−10C22+10C33……10C1010
To find LHS consider In=∫101−(1−x)nxdx⇒In+1−In=∫10(1−x)ndx=1n+1
∴In+1=1n+1+In
∴I10=∫101−(1−x)10xdx=110+I9=110+19+I8≈−−−−=110+19+18+−−−−−+1