The correct options are
A n2 . 2n−2Cn−1
C n2 . 2n−1(r=1∏n−1 (2r−1))(n−1)!
n∑r=0 r2.(nCr)2=n2 n∑r=1(n−1Cr−1)2
=n2×co-efficeint of xn−1 in (1−x)2n−2
=n2⋅ 2n−2Cn−1
n2.(2n−2)!((n−1)!)2=n2.(n−1)!.2n−1.(n−1∏r=0(2r−1))((n−1)!)2
=n2.2n−1.(n−1∏r=0(2r−1))(n−1)!.