1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
nth Term of A.P
Sum of the fi...
Question
Sum of the first p,q and r terms of an A.P. are a, b and c , respectively.
Prove that
a
(
q
−
r
)
p
+
b
(
r
−
p
)
q
+
c
(
p
−
q
)
r
=
0
Open in App
Solution
We know that
S
n
=
n
2
[
2
a
+
(
n
−
1
)
d
]
Sum of first p terms
=
a
⇒
S
p
=
a
⇒
P
2
[
2
a
1
+
(
P
−
1
)
d
]
=
a
.
.
.
(
1
)
where
a
1
is the first term
Sum of first q terms
=
b
=
⇒
S
q
=
b
=
q
2
[
2
a
1
+
(
q
−
1
)
d
]
=
b
.
.
.
.
(
2
)
Sum of first r terms
=
c
⇒
S
r
=
c
⇒
r
2
[
2
a
1
+
(
r
−
1
)
d
]
=
c
.
.
.
(
3
)
(
1
)
⇒
a
p
=
a
1
+
(
P
−
1
2
)
d
−
(
4
)
(
2
)
⇒
b
q
=
a
1
(
a
−
1
2
)
.
.
.
(
5
)
(
3
)
⇒
c
r
=
a
1
+
(
r
−
1
2
)
d
.
.
.
(
6
)
From (4),(5) & (6) we have
LHS
=
a
p
(
q
−
r
)
+
b
q
(
r
−
p
)
+
c
r
(
p
−
q
)
=
(
a
1
(
p
−
1
2
)
d
)
(
q
−
r
)
+
(
a
1
+
(
q
−
1
2
)
)
(
r
−
1
)
+
(
a
1
+
(
r
−
1
2
d
)
)
(
p
−
q
)
=
a
1
(
q
−
r
+
r
−
p
+
p
−
q
)
+
d
2
[
(
p
−
1
)
(
q
−
r
)
+
(
q
−
1
)
(
r
−
p
)
+
(
r
−
1
)
(
p
−
q
)
]
=
a
1
(
0
)
+
d
2
[
p
q
−
p
r
−
q
+
r
+
q
r
−
q
r
−
q
p
−
r
+
p
+
r
p
−
r
q
−
p
+
q
]
=
a
1
(
0
)
+
d
2
(
0
)
=
0
Hence proved
Suggest Corrections
0
Similar questions
Q.
Sum of the first
p
,
q
and
r
terms of an
A
.
P
are
a
,
b
and
c
, respectively.
Prove that
a
p
(
q
−
r
)
+
b
q
(
r
−
p
)
+
c
r
(
p
−
q
)
=
0
Q.
Sum of the first
p, q
and
r
terms of an A.P. are
a, b
and
c
, respectively.
Prove that