Sum the series 5 + 55 + 555 + ... to n terms.
We have 5 + 55 + 555 + ... to n terms
= 5 × {1 + 11 + 111 + ... to n terms}
=59 × {9 + 99 + 999 + ... to n terms}
=59×{(10−1)+(102−1)+(103−1)+⋯to n terms}
=59×{(10+102+103+⋯to n terms)−n}
=59×{10×(10n−1)(10−1)−n}=581×(10n+1−9n−10)
Hence, the required sum is 581×(10n+1−9n−10)