Putting x−3=y
∑2nr=0bryr=∑2nr=0br(y+1)r⇒bn=an+n+1C1an+1+n+2C2an+2+....2nCna2n
A) ak=1⇒bn=1+n+1C11+n+2C21+....2nCn1=2n+1Cn
B)ak=(kCn)−1⇒bn=(kC0)−1+n+1C1(kC1)−1+n+2C2(kC1)−1+....2nCn(kCn)−1=n+1
C) ak=0⇒bn=0+n+1C10+n+2C20+....2nCn0=0
D) ak=k!(n+k)!⇒bn=k!(n+k)!+n+1C1k!(n+k)!+n+2C2k!(n+k)!+....2nCnk!(n+k)!=k!(n+k)!(1+n+1C1+n+2C2+....2nCn)=k!(n+k)!2nCn=n+1n!