Show that tanθ(1−cotθ)+cotθ(1−tanθ)=(1+secθcosec θ)
If cosecθ=54, then find the value of (1+tanθ)(1−tanθ)(1+cotθ)(1−cotθ)
tanθ(1−cotθ)+cotθ(1−tanθ)=(1+secθcosecθ)