1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties Derived from Trigonometric Identities
tan - 1 1 4 ...
Question
tan
−
1
1
4
+
tan
−
1
2
9
=
sin
−
1
1
√
5
Open in App
Solution
R.E.F.Image
t
a
n
−
1
1
4
+
t
a
n
−
1
2
9
=
s
i
n
−
1
1
√
5
L.H.S
t
a
n
−
1
1
4
+
t
a
n
−
1
2
9
∵
t
a
n
−
1
A
+
t
a
n
−
1
B
=
t
a
n
−
1
(
A
+
B
1
−
A
B
)
⇒
t
a
n
−
1
(
1
4
+
2
9
1
−
2
36
)
⇒
t
a
n
−
1
(
9
+
8
36
34
36
)
⇒
t
a
n
−
1
(
17
34
)
⇒
t
a
n
−
1
(
1
2
)
=
θ
(Let)
t
a
n
θ
=
1
2
(
p
e
r
p
e
n
d
i
c
u
l
a
r
)
b
a
s
e
s
i
n
θ
=
p
e
r
p
e
n
d
i
c
u
l
a
r
H
y
p
o
t
e
n
u
s
e
s
i
n
θ
=
1
√
5
θ
=
s
i
n
−
1
1
√
5
R.H.S
Suggest Corrections
0
Similar questions
Q.
Prove the following results:
(i)
tan
-
1
1
7
+
tan
-
1
1
13
=
tan
-
1
2
9
(ii)
tan
-
1
1
4
+
tan
-
1
2
9
=
1
2
cos
-
1
3
5
=
1
2
sin
-
1
4
5
(iii)
tan
-
1
2
3
=
1
2
tan
-
1
12
5
(iv)
tan
-
1
1
7
+
2
tan
-
1
1
3
=
π
4
(v)
sin
-
1
4
5
+
2
tan
-
1
1
3
=
π
2
(vi)
sin
-
1
12
13
+
cos
-
1
4
5
+
tan
-
1
63
16
=
π
(vii)
2
sin
-
1
3
5
-
tan
-
1
17
31
=
π
4
(viii) cot
−1
7 + cot
−1
8 + cot
−1
18 = cot
−1
3
(ix)
2
tan
-
1
1
5
+
tan
-
1
1
8
=
tan
-
1
4
7
(x)
2
tan
-
1
3
4
-
tan
-
1
17
31
=
π
4
(xi)
2
tan
-
1
1
2
+
tan
-
1
1
7
=
tan
-
1
31
17
Q.
(i)
2
sin
-
1
3
5
=
tan
-
1
24
7
(ii)
tan
-
1
1
4
+
tan
-
1
2
9
=
1
2
cos
-
1
3
5
=
1
2
sin
-
1
4
5
(iii)
tan
-
1
2
3
=
1
2
tan
-
1
12
5
(iv)
tan
-
1
1
7
+
2
tan
-
1
1
3
=
π
4
(v)
sin
-
1
4
5
+
2
tan
-
1
1
3
=
π
2
(vi)
2
sin
-
1
3
5
-
tan
-
1
17
31
=
π
4
(vii)
2
tan
-
1
1
5
+
tan
-
1
1
8
=
tan
-
1
4
7
(viii)
2
tan
-
1
3
4
-
tan
-
1
17
31
=
π
4
(ix)
2
tan
-
1
1
2
+
tan
-
1
1
7
=
tan
-
1
31
17
(x)
4
tan
-
1
1
5
-
tan
-
1
1
239
=
π
4
Q.
Sum the following series:
tan
-
1
1
3
+
tan
-
1
2
9
+
tan
-
1
4
33
+
.
.
.
+
tan
-
1
2
n
-
1
1
+
2
2
n
-
1
Q.
The value of
tan
−
1
(
1
3
)
+
tan
−
1
(
2
9
)
+
tan
−
1
(
4
33
)
+
tan
−
1
(
8
129
)
+
.......
n
terms is
Q.
Find the sum of the following series:
tan
−
1
1
3
+
tan
−
1
2
9
+
tan
−
1
4
33
+
.
.
.
.
+
tan
−
1
2
n
−
1
1
+
2
2
n
−
1