tan−11√x2−1=
tan−11√x2−1=tan−11√cosec2 θ−1 (Putting x = cosec θ ) tan−11cot θ=θ=cosec−1 x.
If y=tan−1(11+x+x2)+tan−1(1x2+3x+3)+tan−1(17+5x+x2)+…n terms, then (dydx)x=0=