We have,
tan−1(acosx−bsinxbcosx+asinx)
On divide numerator and denominator by cosx and we get,
tan−1(acosx−bsinxbcosx+asinx)
⇒tan−1⎛⎜ ⎜ ⎜⎝acosx−bsinxcosxbcosx+asinxcosx⎞⎟ ⎟ ⎟⎠
⇒tan−1⎛⎜ ⎜ ⎜⎝acosxcosx−bsinxcosxbcosxcosx+asinxcosx⎞⎟ ⎟ ⎟⎠
⇒tan−1(a−btanxb+atanx)
⇒tan−1bb⎛⎜ ⎜⎝ab−tanx1+abtanx⎞⎟ ⎟⎠
⇒tan−1(tany−tanx1+tanytanx)∴lettany=ab
⇒tan−1tan(y−x)∴So,y=tan−1ab
⇒(y−x)
⇒tan−1ab−x
Hence, this is the answer.