tan−1√3−cot−1(−√3) is equal to
a) π
b) −π2
c) zero
d) 2√3
tan−1√3−cot−1(−√3)=tan−1√3−[π−cot−1√3][∵cot−1(−x)=π−cot−1x]=tan−1√3−π+cot−1√3=tan−1√3−π+tan−11√3(∵tan−11x=cot−1x)=[tan−1√3+tan−11√3]−π=tan−1(√3+1√3)1−(√3×1√3)−π[∵tan−1x+tan−1y=tan−1(x+y1−xy)]=tan−1(∞)−π=π2−π=−π2(∵tanπ2=∞)
Hence, the correct option is (b).