tan−1(x2+y2)=a Evaluate dydx
We have, tan−1(x2+y2)=a On differentiating both sides w.r.t.x. we get ddxtan−1(x2+y2)=ddx(a)⇒11+(x2+y2)2.ddx(x2+y2)=0⇒ddx(x2+y2)=0⇒2x+2y.dydx=0∴ dydx=−2x2y=−xy