The correct option is C tanA+tanB+tanC−tanAtanBtanC1−tanAtanB−tanBtanC−tanAtanC
Given : tan(A+B+C)
tan(A+B+C)=sin(A+B+C)cos(A+B+C)
We have, sin(A+B+C)=cosAcosBcosC[tanA+tanB+tanC−tanAtanBtanC]
cos(A+B+C)=cosAcosBcosC[1−tanAtanB−tanBtanC−tanAtanC]
∴tan(A+B+C)=cosAcosBcosC[tanA+tanB+tanC−tanAtanBtanC]cosAcosBcosC[1−tanAtanB−tanBtanC−tanAtanC]
⇒tan(A+B+C)=tanA+tanB+tanC−tanAtanBtanC1−tanAtanB−tanBtanC−tanAtanC