Prove that tanθ1-cotθ+cotθ1-tanθ=1+secθcosecθ.
L.H.S. tanθ1-cotθ+cotθ1-tanθ
=tanθ1-1tanθ+1tanθ1-tanθ
=tanθtanθ-1tanθ+1tanθ×11-tanθ
=tan2θtanθ-1+1tanθ(1-tanθ)
=tan2θtanθ-1-1tanθ(tanθ-1)
=tan3θ-1tanθ(tanθ-1)
=(tanθ-1)(tan2θ+tanθ+1)tanθ(tanθ-1)
=tan2θ+tanθ+1tanθ
=tanθ+1+cotθ
=1+tanθ+cotθ
=1+sinθcosθ+cosθsinθ
=1+sin2θ+cos2θcosθsinθ
=1+1cosθsinθ
=1+secθcosecθ
∴L.H.S=R.H.S.
Hence proved
prove that sin theta (1 + tan theta) + cos theta (1 + cot theta) = sec theta + cosec theta