(tanθ+tan2θ)−tanθ+tan2θ1−tanθtan2θ=0
or (tanθ+tan2θ)(1−tanθtan2θ−1)=0
or tanθtan2θ(tanθ+tan2θ)=0
tanθ=0,∴θ=nπ,tan2θ=0,
∴2θ=nπ or θ=nπ/2
tanθ+tan2θ=0
or sin(θ+2θ)=0
∴θ=nπ/3
But for odd values of n, the values of θ given by θ=nπ/2 do not satisfy the given equation as it will lead to ∞=∞
Hence the required solution is:
θ=2mπ2=mπ,θ=nπ3,m,n∈I.