The correct option is C (m-5)
Given, m2+7m−60(m+12) ...(i)
Comparing m2+7m−60 with the identity x2+(a+b)x+ab,
we note that, (a+b)=7 and ab=−60
So, 12+(−5)=7 and (12)(−5)=−60
Hence,
m2+7m−60
=m2+12m−5m−60
=m(m+12)−5(m+12)
=(m−5)(m+12)
From (i), we get,
m2+7m−60(m+12)=(m−5)(m+12)(m+12)=(m−5)