If f(x)={xsin1xx≠00x=0,then limx→0 f(x)=
1
0
-1
does not exist
Here f(0)=0 Since -1 ≤ sin 1x ≤ 1 ⇒ -|x| ≤ xsin 1x ≤ |x|
We know that limx→0 |x| = 0 and limx→0 - |x|=0 In this way limx→0 f(x) =0
limx→0(e1/x−1)(e1/x)+1
If f(x)=xsin(1x),x≠0, then limx→0f(x)=