Ify=esin−1x, then (1−x2)y2−xy1=
0
1
y
2y
y=esin−1x,⇒y1=y√1−x2
⇒ y21(1−x2)=y2 ⇒ 2y1y2(1−x2)+y21(−2x)=2yy1 ⇒ (1−x2)y2−xy1=y
Ify=a cos(log x)+bsin(log x) then x2y2+xy1=
Ify=sin−1x,then (1−x2)y2−xy1