If |z|=2 and arg(z)=π4, find z.
Let z=r (cos θ+i sin θ)|z|=r=2 and θ=π4z=2[cosπ4+i sinπ4] [∵ z=r (cosθ+i sinθ)]=2[1√2+i 1√2]=√2(1+i)
If z=cosπ4+i sinπ6, then
If |z| = 4 and arg z = -π4, then z is: