We have an+1=a2n−an+1=(an−12)2+34>0So an≠0 for n∈N∴an is an increasing function.an+1−1=a2n−an⇒1an+1−1=1a2n−an⇒anan+1−1=1an−1⇒anan+1−1−1an=1an−1−1an⇒a2n−an+1+1an(an+1−1)=1an−1−1an⇒1(an+1−1)=1an−1−1an∴∞∑n=11an=∞∑n=1(1an−1−1an+1−1)⇒∞∑n=11an=(1a1−1)+(limn→∞1an+1−1)⇒∞∑n=11an=1