Prove that cos(π4+x)+cos(π4−x)=√2cosx L. H. S. = cos(π4+x)+cos(π4−x) cos(A+B)+cos(A−B)=2cosAcosB =2cos(π4)cosx =21√2×cosx =√2cosx=R.H.S Hence proved.
Prove that
(i) cos(π4+x)+ cos(π4−x) = √2 cos x
(ii) cos(3π4+x)− cos(3π4−x) =− √2 sin x