The correct option is
D A is false but R is true.
A:S1:x2+y2−2x+3y+k=0
Radius, r1=√134−k; centre, C1=(1,−32)
S2:x2+y2+8x−6y−7=0
Radius, r2=√25+7=√32; centre, C2=(−4,3)
∴ By property of orthogonal circles, we can say
r12+r22=(C1C2)2
⇒134−k+32=25+814
⇒k=7−684
⇒k=7−16=−10 → False
R:
S1:x2+y2+2gx+2fy+c=0
Radius, r1=√g2+f2−c; centre, C1=(g,f)
S2:x2+y2+2g′x+2f′y+c′=0
Radius, r2=√(g′)2+(f′)2−c′; centre, C1=(g′,f′)
If they orthogonal to each other then,
r12+r22=(C1C2)2
g2+f2−c+(g′)2+(f′)2−c′=(g′)2+g2−2gg′+(f′)2+f2−2ff′
⇒c+c′=2gg′+2ff′ → True
Hence, option D.