\(\textstyle \int_0^{\pi}x~log~sin~x~dx=\)
I=∫π0x log sin x dx ⋯(i) =∫π0(π−x)log sin(π−x)dx ⋯(ii) By adding (i) and (ii), we get 2I=∫π0π log sin x dx⇒I=2π2∫π20 log sin x dx =π(π2log 12)=π22log 12