∫1−1x|x|dx= [MP PET 1990; Pb. CET 2004]
Let f(x)=x|x|. Then f(−x)=−x|−x|=−x|x|=−f(x) Therefore ∫1−1x|x|dx=0 (By the property of definite integral).
∫10e2 In xdx= [MP PET 1990]
∫1−1 x17cos4 x dx= [MP PET 1990]
The integrating factor of the differential equation dydx=y tan x−y2 sec x is
[MP PET 1995; Pb. CET 2002]